PI(5)P Regulates Autophagosome Biogenesis
نویسندگان
چکیده
منابع مشابه
PI(5)P Regulates Autophagosome Biogenesis
Phosphatidylinositol 3-phosphate (PI(3)P), the product of class III PI3K VPS34, recruits specific autophagic effectors, like WIPI2, during the initial steps of autophagosome biogenesis and thereby regulates canonical autophagy. However, mammalian cells can produce autophagosomes through enigmatic noncanonical VPS34-independent pathways. Here we show that PI(5)P can regulate autophagy via PI(3)P...
متن کاملMechanisms of Autophagosome Biogenesis
Autophagy is a unique membrane trafficking process whereby newly formed membranes, termed phagophores, engulf parts of the cytoplasm leading to the production of double-membraned autophagosomes that get delivered to lysosomes for degradation. This catabolic pathway has been linked to numerous physiological and pathological conditions, such as development, programmed cell death, cancer, pathogen...
متن کاملAtg4 in autophagosome biogenesis
Double-membrane autophagosomes are the hallmark of autophagy, a catabolic process conserved among eukaryotes. Autophagy is crucial for the degradation of unwanted structures such as unfolded proteins, protein aggregates and dysfunctional organelles, which, if accumulated, could impair cellular homeostasis. Hence, autophagy dysregulation leads to the development of several pathologies including ...
متن کاملMembrane dynamics in autophagosome biogenesis.
Bilayered phospholipid membranes are vital to the organization of the living cell. Based on fundamental principles of polarity, membranes create borders allowing defined spaces to be encapsulated. This compartmentalization is a prerequisite for the complex functional design of the eukaryotic cell, yielding localities that can differ in composition and operation. During macroautophagy, cytoplasm...
متن کاملERES: sites for autophagosome biogenesis and maturation?
Autophagosomes are the hallmark of autophagy, but despite their central role in this degradative pathway that involves vesicle transport to lysosomes or vacuoles, the mechanism underlying their biogenesis still remains largely unknown. Our current concepts about autophagosome biogenesis are based on models suggesting that a small autonomous cisterna grows into an autophagosome through expansion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Cell
سال: 2015
ISSN: 1097-2765
DOI: 10.1016/j.molcel.2014.12.007